Selected Formulas for Calculus Tests

[Note: This is the formula sheet that I provided with the Final Exam. For Test \#1, I provided just the derivatives of the inverse trigonometric functions; for Test \#2, I added the double-angle formulas; for Test \#3, I added Simpson's Rule. For the Final Exam, I added the various tests for convergence of a series.]
Inverse Trigonometric Functions

$$
\begin{aligned}
\frac{d}{d t} \arcsin (t) & =\frac{1}{\sqrt{1-t^{2}}} \\
\frac{d}{d t} \arccos (t) & =-\frac{1}{\sqrt{1-t^{2}}} \\
\frac{d}{d t} \arctan (t) & =\frac{1}{1+t^{2}} \\
\frac{d}{d t} \operatorname{arcsec}(t) & =\frac{1}{t \sqrt{t^{2}-1}}
\end{aligned}
$$

Double-Angle Formulas

$\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
$\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=1-2 \sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1$
$\tan (2 \theta)=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}$
Simpson's Rule: $\frac{2}{3} M R+\frac{1}{3} T R$, where $M R$ is the Midpoint Rule, and $T R$ is the Trapezoidal Rule.
Divergence Test
If the sequence $b_{0}, b_{1}, b_{2}, \ldots$ does not converge to 0 , then the series $\sum_{k=0}^{\infty} b_{k}$ diverges.

Alternating Series Test

Suppose that a series has the form $a_{1}-a_{2}+a_{3}-\cdots+(-1)^{k+1} a_{k}+\ldots$, where

- each a_{k} is positive,
- each a_{k} is larger than a_{k+1}, and
- $\lim _{k \rightarrow \infty} a_{k}=0$.

Then
i. the series converges to some number S, and
ii. \quad the error $\left|S-s_{n}\right|$ after summing n terms is less than a_{n+1}.

Ratio Test

Let $L=\lim _{k \rightarrow \infty}\left|\frac{b_{k+1}}{b_{k}}\right|$.

- If $L<1$, then the series converges.
- If $L>1$, then the series diverges.
- If $L=1$, then this test gives no information about convergence or divergence.

